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In a recent Brief Report and subsequently [Phys. Rev. A 43, 2050 (1991); 44, 8439 (1991)], Berdichev-
sky, Kunin, and Hussain claim that the ‘“Boltzmann temperature” of a bounded point vortex system is
always positive, and that the spatial inhomogeneities that evolve at high energies in such a system are in-
compatible with ergodicity of the dynamics. The argument given to support these claims neglected the
presence of the fluid boundary. We prove that the Boltzmann temperature is in fact always negative, and
present evidence that the vortex clumping that has been observed in simulations is consistent with ergod-

ic dynamics.

PACS number(s): 05.90.+m, 67.40.Kh, 47.90.+a, 67.40.Vs

In a Brief Report [1], Berdichevsky, Kunin, and Hus-
sain state that the “paradoxical” situation of negative
temperature states for bounded vortex systems can be
resolved by using a definition for the entropy of the mi-
crocanonical ensemble that is more appropriate than the
usual one for systems with finitely many particles.
Specifically, the entropy S(E) of the system at energy E
is taken to be logl'(E), where I'(E) is the volume of the
region in state space of states having energy not greater
than E. Since I is an increasing function, the thermo-
dynamic definition of temperature 1/7T=dS/dE shows
that the temperature is positive at all energies. Further-
more it is claimed that the temperature as just defined is
identical to the “Boltzmann temperature” {x;0H /dx;).
Here H is the energy function, x; is any coordinate in Eu-
clidian phase space, and the angular brackets denote the
integral with respect to the canonical invariant measure
on the set of states with energy E. Both definitions of
temperature are valid for systems with finitely many,
even few, degrees of freedom. In a subsequent Reply [2]
to a Comment on their original Brief Report, Berdichev-
sky et al. write, “The appearance of ordered structures
like clouds of positive and negative vortices is evidence of
the nonergodicity of motion rather than a manifestation
of negative temperature.”

In this Comment we wish to point out that for a
bounded vortex system, the Boltzmann temperature is in
fact negative for all energies. Furthermore we argue that
vortex clumping is not inconsistent with ergodic dynam-
ics, and in fact the usual methods of statistical mechanics
(including the assumption of ergodicity) predict an inho-
mogeneous equilibrium state which is in agreement with
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simulations.

In a previous work [3] Berdichevsky established that, if
each level surface of the energy function H is assumed to
be compact and to bound the region in phase space of
states having equal or lesser energy, then the following
relation holds:

I L OH d4
Hx)=E ' 0x; ||[VH]|

=T(E) . (1)

The integral is over the states with energy E and d 4 is
the volume element of this hypersurface. When properly
normalized, this integral gives the Boltzmann tempera-
ture; the normalization constant is simply 1/I"'(E).

The assumptions underlying (1) do not hold for bound-
ed vortex systems because the boundary is ‘“attractive,”
that is, H— — o as any vortex tends to the boundary.
Thus the boundary of the set of states having energy not
greater than E consists of the level set H (x)=F and the
boundary of state space itself. (Recall that in a vortex
system there is no momentum, and the state space for a
system of N particles in a region D is merely DV.) For
example, for a single vortex in a rectangular region, the
set of states with H <E consists of the region between
the curve H =E and the rectangular boundary.

The effect of this additional boundary is to add the
constant —I'( ) to the right-hand side of (1). A simple
way to see this is to consider the same system with a
different energy function, namely, H= —H. The bound-
ary is now “repulsive,” and (1) is valid, with H, E, and
I'(E) replaced by A, E=—E, and T'(E)=T(w)—T(E),
respectively. [The proof of (1) as given in Ref. [3] must
be modified slightly, because of the singularity in H when
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two particle positions coincide.] Thus for bounded vortex
systems one finds that the Boltzmann temperature is

< a_H>: [(E)—T() o

i ax, (E)

This quantity is negative for all E.

As pointed out in Ref. [1], the sign of the Boltzmann
temperature of a vortex system has geometric significance
if the dynamics are ergodic. Negative values correspond
to an average counterclockwise motion of the positive
vortices in the region and clockwise motion of the nega-
tive ones. This result is consistent with a considerable
body of evidence that has appeared over the past twenty
years (again see the citations in Ref. [1]) which has shown
that neutral vortex systems, at sufficiently high energies,
tend to evolve to a state in which all the positive vortices
are moving counterclockwise in a single eddy, and the
negative vortices clockwise in another. Furthermore, a
simulation [4] of a small neutral vortex system (with
periodic boundary conditions) shows that at very low en-
ergies, vortices tend to join up in neutral pairs and move
rapidly about more or less independently of one another,
except for scattering exchanges. In the presence of a
boundary, a large negative average value of {x;0H /9x;)
would result.

The expected value in (2) is an average over states. If
the dynamics of the system are ergodic, this corresponds
(with probability 1) to the time average along a trajectory
in state space. In Ref. [2] the claim is made that the em-
ergence of vortex clusters is evidence for the nonergodici-
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ty of vortex dynamics, i.e., the evolution of ordered struc-
tures is inconsistent with ergodicity. Ergodicity of vortex
dynamics is an open question, although there is some evi-
dence that vortex dynamics are not ergodic for a system
with only six vortices [4]. Nevertheless, numerical work
[5] done on neutral vortex systems with periodic bound-
ary conditions shows that the emergence of coherent
structures is consistent with ergodicity. In this work,
state space averages were taken of a certain function
which is a natural diagnostic of vortex clustering. The
results clearly show that states with two vortex clusters
are the “most probable” states at high energies. Any er-
godic dynamics for this system would exhibit an evolu-
tion in time towards this most probable state. This be-
havior is seen, at least qualitatively, in simulations of con-
tinuous vorticity distributions [6].

" Recently Eyink and Spohn [7] have studied the micro-
canonical ensemble of regularized point vortices in the
“mean-field” limit, where the number of vortices goes to
infinity while the region and the total vorticity remain
constant. (This differs from the usual thermodynamic
limit, and is the appropriate limit to take when discussing
models of continuous fluid flow.) They find a unique
macroscopic equilibrium state (vorticity distribution) for
energies above a threshold. Moreover they find the same
distribution using the canonical ensemble, provided the
temperature is negative. In the context of the canonical
ensemble it seems clear that negative temperature is not
just a synonym for high energy but rather has a physical
significance, i.e., vortices of the same sign “statistically
attract.”
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